Industrial Applications of 3D Printing:
The Ultimate Guide



Introduction


3D printing, also known as additive manufacturing, has come a long way since it was first developed in the 1980s. While 3D printing originated as a tool for rapid prototyping, it has now evolved to cover a number of different technologies.  


The evolution of 3D printing has seen a rapid growth in the number of companies adopting the technology. The applications and use cases vary across industries, but broadly include tooling aids, visual and functional prototypes — and even end parts.

As the potential applications for 3D printing increase, companies are beginning to find ways to create new business models and opportunities with the technology.

 

In this guide, we’ll be exploring the current state of 3D printing across a range of industries, including how the technology is being used across sectors. Using real-life examples, we hope that this guide gives you an in-depth understanding of how 3D printing is being used to drive innovation and business growth.



CHAPTER 1

Aerospace & Defence



Aerospace applications of 3D printing


The aerospace and defence (A&D) industry is one of the earliest adopters of 3D printing, with the first use of the technology going back to 1989. Now, three decades later, A&D represents 12% of the $7 billion additive manufacturing market and heavily contributes to ongoing research efforts within the industry. 


The advancement of AM within A&D is in large part driven by key industry players, including GE, Airbus, Boeing, Safran and GKN. These companies and others have identified the value proposition 3D printing brings to:

 

  • Functional prototypes
  • Tooling
  • Lightweight components

As we can see, 3D printing for aerospace isn’t limited to prototypes. Real, functional parts are also being 3D printed and used in aircraft. A few examples of parts that can be produced with 3D printing include air ducts (SLS), wall panels (FDM) and even structural metal components (DMLS, EBM, DED).



The Benefits of 3D printing for Aerospace & Defence
 

Low-volume production


For industries like aerospace and defense, where highly complex parts are produced in low volumes, 3D printing is ideal. Using the technology, complex geometries can be created without having to invest in expensive tooling equipment. This offers aerospace OEMs and suppliers a cost-effective way to produce small batches of parts cost-effectively.  


Weight reduction


Alongside aerodynamics and engine performance, weight is one of the most important factors to consider when it comes to aircraft design. Reducing the weight of an aircraft can significantly reduce its carbon dioxide emissions, fuel consumption and payload.  


This is where 3D printing comes in: the technology is an ideal solution for creating lightweight parts, resulting in considerable fuel savings. When coupled with design optimisation tools like generative design software, the potential for increasing the complexity of a part is almost limitless.

Material efficiency


Since the 3D printing process works by producing parts layer by layer, material is, for the most part, used only where needed. As a result, it produces less waste than traditional subtractive methods.

 

The selection of available 3D printable materials for aerospace and defence applications ranges from engineering-grade thermoplastics (e.g. ULTEM 9085, ULTEM 1010, PAEK, reinforced Nylon) to metal powders (high-performance alloys, titanium, aluminium, stainless steel).

 

The range of available 3D printable materials is constantly expanding, unlocking advanced aerospace applications.


Part consolidation


One of the key benefits of 3D printing is part consolidation: the ability to integrate multiple parts into a single component. Reducing the number of parts needed can significantly simplify the assembly and maintenance process by reducing the amount of time needed for assembly.


Maintenance & repair 


The average lifespan of an aircraft can range between 20 and 30 years, making maintenance, repair and overhaul (MRO) an important function in the industry. Metal 3D printing technologies like Direct Energy Deposition are commonly used to repair aerospace and military equipment. Turbine blades and other high-end equipment can also be restored and repaired by adding material to worn-out surfaces.




Aerospace applications

Spotlight: GE

Aircraft engine components


​In 2015, GE announced it had used additive manufacturing to produce a fuel nozzle, to be used inside the bestselling LEAP jet engine. The development would go on to become one of the most illustrious examples of 3D printing being used in the aerospace industry.

The enduring nature of this use case — GE reached a milestone of 30,000 3D-printed fuel nozzles in October 2018 — lies in how it illustrates the strength of 3D printing in combining part complexity with cost efficiency.

Engineers at GE were originally tasked with the challenge of producing a fuel-efficient engine. The answer, it emerged, lay in in the complex interior of the engine’s fuel nozzles. Additive manufacturing enabled engineers to consolidate 20 separate parts into one, lowering the weight of the nozzle by 25% and reducing the cost to produce.


GE 3D printed fuel nozzle

As of October 2018, GE has reached a milestone of 30,000 fuel nozzles produced additively [Image credit: GE]


Aircraft interior components


Spotlight: Airbus


3D-printed plastic parts can be incredibly useful for aerospace applications, such as aircraft interiors.

The cabin interiors of a commercial aircraft will need to be updated periodically, a process that can involve replacing components like wall panels. The need for customisation means that parts will typically be produced in low volumes. Quick turnaround times are also a must.  


A good example of this is Airbus. As of 2018, the company has produced and is set to install 3D-printed spacer panels on its commercial A320 aircraft. Traditionally, new plastic components would be produced using injection moulding — an expensive and complex procedure for the low volumes, specialised requirements and high complexity needed.


With 3D printing (FDM), Airbus has been able to produce components with complex features like lattice structures, without any additional manufacturing cost. The result: spacer panels that are 15% lighter than panels created using traditional methods — contributing to the weight reduction of the aircraft itself.


Airbus A350 flight 3D printing in aerospace

Structural components for defence systems


Spotlight: Nano Dimension and Harris Corporation


When it comes to defence, 3D printing has the potential to change the way end parts for military equipment are produced. Current defence applications range from complex brackets and small surveillance drones, to jet engine components and submarine hulls.


Electronics 3D printing is a young yet increasingly growing area of interest for defence companies. With the technology, engineers are currently able to design and produce prototypes of complex circuit boards and antennas in-house.

For manufacturers, this means being able to accelerate the product development process by eliminating the need to outsource high-value projects to third parties.  


Antennas are an important example of how 3D printing is speeding up the design process for electronic devices.

Take the case of Harris Corporation which, alongside Nano Dimension, a manufacturer of 3D printing electronics systems, achieved a key breakthrough in 2018 when it produced antennas using 3D printing.  

Nano Dimension Harris Corporation

Harris Corp. and Nano Dimension successfully partnered to produce a 3D-printed RF circuit [Image credit: Harris Corp.]


Tooling


Spotlight: Latécoère & Moog Aircraft Group


Aerospace companies can also benefit from 3D printing by using the technology to produce custom tooling equipment like jigs and fixtures on demand.

 

French aerospace manufacturer Latécoère used 3D printing to cut down lead times for custom tooling. Previously, the company used CNC milling to manufacture these tools, with lead times of up to six weeks. Now, with FDM 3D printers, Latécoère can create production tools in just a couple of days — a lead time reduction of 95%.


The company claims this new approach to tooling production also cuts costs by 40%. Notably, the tools are ergonomically customised, making the operator’s job easier and resulting in faster and more efficient production times.

 

Similarly, the Moog Aircraft Group is using FDM 3D printing to produce tools like coordinate measuring machines (CMM) in-house. In the past, the company outsourced this fixture, with the process taking between 4 to 6 weeks. Now Moog uses 3D printing in-house, making CMM fixtures in approximately 20 hours. Fixtures that would have previously cost over £2,000 can now be made for a couple of hundred pounds.


Spare parts

 

Spotlight: Satair


Heavily reliant on spare and replacement parts, aerospace companies increasingly require short lead times for this application.

To meet this demand, suppliers to the aerospace industry must find ways to provide manufacturing services faster. Additive manufacturing enables spare parts can be produced quickly at the point of need. This, in turn, reduces the need for vast inventories of stock, helping to reduce inventory costs and ensure parts are produced locally.


Satair is an Airbus subsidiary that specialises in the distribution of spare parts, offering additively manufactured plastic and metal parts.


The spare parts provider uses 3D printing to produce customised parts and tooling, with the technology helping to greatly reduce lead times and simplify complex supply chain logistics. With this strategic approach, the company is able to improve its turnaround times by quickly producing spare parts for maintenance operations.

 

The aerospace and defence industry makes up a significant proportion of the AM market. The reasons for this are simple: additive manufacturing offers enormous value, from improving aircraft performance to offering a more agile approach to spare parts production.

 

Making the move towards production, however, requires additive manufacturing to overcome certain challenges. These include the certification of 3D-printed parts, better process repeatability and security.

 

Nevertheless, with considerable investment being made to develop and certify 3D printing processes and materials, the future of 3D printing for the aerospace and defence industry certainly looks bright.





CHAPTER 2

Automotive



Automotive 3D printing applications


The automotive industry is a growing user of additive manufacturing: in 2018 alone, the automotive 3D printing market was estimated to be worth $1.4 billion. This figure only looks set to increase, as the market has been forecast to reach $5 billion by 2023, according to one report. In areas like motorsports and performance racing, design tools like generative design and topology optimisation are slowly changing traditional approaches to designing parts.

 

While prototyping currently remains the main application of 3D printing in the automotive industry, companies are increasingly finding other use cases, such as tooling. Additionally, the several automotive companies are beginning to find innovate end-use applications for 3D printing, signalling an exciting development for the sector.

 



The Benefits of 3D printing for Automotive
 

Faster product development


Prototyping has become a key part of the product development process, offering a means to test and validate parts before they are manufactured. 3D printing offers a quick and cost-effective approach to designing and producing parts. Since the need for tooling is eliminated, product teams can significantly accelerate product development cycles.  


​Greater design flexibility


The ability to produce designs quickly gives designers greater flexibility when testing multiple design options. 3D printing enables designers to make quick design changes and modifications in a fraction of the time.


Customisation


3D printing offers automakers a cost-effective and flexible way to produce customised parts. Within the luxury and motorsports segment of the industry, companies are already using the technology to produce personalised parts for both the interior and exterior parts of a vehicle.  


Create complex geometries


With the majority of car components requiring complex geometries like internal channels (for conformal cooling), thin walls and fine meshes, AM enables highly complex parts to be produced that are still lightweight and durable.




Automotive applications

Spotlight: Ford Motor Company

Tooling


To produce high-quality parts, tooling aids are needed for manufacturing and assembly. While tooling equipment (like injection moulds, jigs and fixtures) aren’t prototypes or end parts, they remain a vital element of the production process.


With 3D printing technologies like FDM and SLS, automotive companies are able to produce tooling aids at a fraction of the cost, greatly increasing efficiency on the factory floor. Tooling can also be customised for improved functionality at a significantly lower cost than conventional methods.  


A great example of tooling innovation is Ford which, in 2018, was awarded for its use of of 3D printing for tooling.

One of the company’s award-winning tools was an assembly lift assist, produced using FDM. The 3D-printed part cost 50% less than a conventional counterpart and significantly reduced lead times.


Weight reduction was a key factor in this use case — a lighter lift assist device would make it easier to operate and reduce repetitive motion injuries. With 3D printing, engineers were able to produce a significantly lighter fixture. 


Ford Motor Company 3D printed lift assist


As of October 2018, GE has reached a milestone of 30,000 fuel nozzles produced additively


Prototypes  


Prototyping has been the primary use of 3D printing for automotive applications. With the ability to produce multiple design iterations in a shorter amount of time, 3D printing is an effective tool for product development. The technology has now evolved to where it can be used to create functional prototypes using high-performance materials like ULTEM and PEEK.


Spare and replacement parts


Spotlight: Porsche


Inventory costs constitute a significant proportion of expenditure for many automotive OEMs and suppliers. Within conventional manufacturing, mass producing spare parts is commonplace. However, this often leads to long delivery times and high inventory costs.

 

Additive manufacturing has the potential to transform the way spare parts are manufactured and distributed — through on-demand manufacturing. This means that parts are produced locally, at the time of need. Coordinating supply and demand in this way could not only drastically reduce inventory costs, but also slash delivery times to the end customer.


German car manufacturer Porsche is taking advantage of 3D printing for this very purpose. For collectors, Porsche’s Classic cars can be highly sought after. Not having the right part, however, can mean that a car can no longer function. Yet the relatively low demand, coupled with short production runs, means that stocking a high number of spare parts for such cars isn’t feasible.


This is where 3D printing comes in.


In early 2018, the company announced its use of 3D printing to produce spare parts for its rare and classic cars. Combining SLM technology for metal components and SLS for plastics, Porsche has been able to make a wide selection of high-quality rare parts available to its customers at a fraction of the cost.


End-use parts


Spotlight: BMW


One of the major barriers to using additive manufacturing for production is the high production volumes typically required for the automotive industry (over 100,000 parts per year). However, recent years have seen great improvements in the speed and size of industrial printers as well as greater material availability.


As a result, AM is becoming a viable manufacturing option for certain medium-size production runs, particularly in areas like motorsports and luxury vehicles, where production numbers are lower than average.


With over 1 million parts 3D-printed in the last decade, BMW finds itself among the industry’s frontrunners when it comes to additive manufacturing.


In the case of end parts, BMW has successfully used 3D printing to produce a metal fixture for its i8 Roadster model. Engineers created an optimised roof bracket (a fixture that helps to fold and unfold the vehicle’s soft top) that weighs 44% less than previous versions.


Today, the company can 3D print up to 238 of these parts per platform, making the roof bracket the first mass-produced, additively manufactured automotive component.

3D printing is gradually changing the way vehicles are developed today. Whether it’s a commercial vehicle, truck or racing car, the technology offers automotive engineers and designers the tools to test the limits of design and performance.

 

Yet, the key drivers behind the increased adoption of 3D printing in automotive remain the ability to speed up time to market and reduce product development costs. As 3D printing technologies evolve, the prospect of large-scale manufacturing will become increasingly likely.




CHAPTER 3

Medical & Dental




Medical 3d printing human anatomy

The medical and dental industry is one of the fastest-growing adopters of additive manufacturing. And with 97% of medical AM professionals confident that the use of 3D printing will continue to increase within the sector, this trend seems set to continue. From medical devices to prosthetics and even bioprinting, the applications of additive manufacturing for the medical industry are versatile and wide-ranging.  




The Benefits of 3D printing for Medical & Dental  


What is driving this growth? The geometric freedom afforded by AM and the ability to provide more personalised patient care cost-effectively is hugely appealing. And when coupled with CT scanning, 3D printing can be used to provide patient-specific solutions, such as implants and dental appliances.


Enhanced medical devices


3D printing is an ideal technology for creating or optimising designs for medical devices. Thanks to low-cost rapid prototyping, medical device manufacturers have greater freedom in designing new products, helping to bring new medical devices to the market much faster.


Personalised healthcare

The medical industry can leverage the capabilities of 3D printing to create patient-specific devices. For example, devices such as prosthetics and implants can be produced faster and more affordably than with traditional manufacturing methods.




Medical applications

Spotlight: ​3D-printed hearing aids

Arguably the biggest success story of 3D printing within the medical field to date has been in the production of hearing aids.


Over 5% of the current global population has disabling hearing loss, according to the World Health Organisation (WHO). By 2050, this figure is estimated to rise to 10%, meaning that the already sizable market for hearing aids will only continue to grow.  


Here, 3D printing has come into its own, with 98% of hearing aids worldwide produced with the technology.


But why 3D printing?

 

Well, using a digital image of the ear canal and biocompatible resin materials, the technology can be used to create custom-fit hearing aids. The main technology used in the production of hearing aids is SLA, thanks to its high level of detail and dimensional accuracy for smaller parts.

 

3D printed Hearing aids by Envisiontech

3D printed hearing aids by Envisiontech [Image credit: EnvisionTech]





Digital dentistry


Digital dentistry is transforming the dental sector. Traditional processes used to create dental impressions are gradually being replaced by digital technologies, with desktop systems, 3D scanners and materials becoming more accessible.

 

By combining intraoral scanning and 3D printing, dental labs can create dental products like crowns, bridges and bite splints, that perfectly match a patient’s anatomy.

 

The rate of success in dental implantology can be also increased with the help of 3D printing, as custom dental surgical guides are produced. This improves the quality and accuracy of dental work. These surgical guides can be produced faster and more cheaply.

 

Formlabs, a manufacturer of SLA and SLS desktop machines, has estimated that over 50,000 surgeries have been performed using a surgical guide made on one of its machines.


3D printed orthodontics Formlabs

3D-printed implants & prosthetics


Spotlight: Open Bionics 


3D printing can be used to create custom prosthetic and orthopaedic devices from a number of certified biocompatible plastic or metal (e.g. titanium) materials.   


For example, British start-up Open Bionics has developed medically-certified 3D-printed prosthetics, including bionic arms. 3D printing enables one of the company’s flagship products — the Hero Arm — to be made available at a fraction of the cost of conventional bionic hands: £5,000.

 

The lower price point of such products makes them particularly suitable for use with children, who quickly outgrow their prosthetic limbs.


Bioprinting 


Spotlight: Organovo  


While 3D printing cannot yet be used to 3D print body parts, the technology can be used to create artificial living tissues that can mimic natural tissue characteristics. 


Known as bioprinting, this technology is used for research and testing, with great potential for regenerative medicine. Instead of using plastics or metals, 3D bioprinters layer living cells, referred to as bio-ink, mimicking organ tissues.

 

3D bioprinting is already being used to fabricate relatively simple artificial tissues and structures such as cartilage, skin, and bone, as well as blood vessels and cardiac patches.


Organovo is a US-based medical laboratory and research company that is exploring the use of 3D printing to produce bioprinted tissue. Its bioprinting process turns cells taken from donor organs into bio-ink. These cells are then laid down layer-by-layer to build up small areas of tissue.

 

These 3D printed tissues could provide a better way to test new drugs and therapies, overcoming the need to test on animals or perform risky clinical trials.


Surgical planning and testing 


Hospitals are increasingly incorporating 3D printing in their labs to create patient-specific anatomy models. Based on a patient’s MRI and CT scans, these models are usually created using full-colour 3D printing techniques like Material Jetting to ensure they remain highly precise and realistic.


Surgeons can then use these 3D-printed organ replicas to plan and practice a surgical operation prior to performing it. This approach has been proven to speed up procedures, improve surgical precision and minimise invasion.

 


Currently, the medical and dental sector is estimated to represent 11% of the overall additive manufacturing market. The core strength of 3D printing for this sector is its ability to deliver on more personalised healthcare, in addition to opportunities to improve presurgical planning and drive device innovation.

 

However, for 3D printing to truly transform the medical and dental market, there are still key challenges that will need to be addressed, most notably the certification of 3D printing processes and devices.

 

With that said, current trends suggest that the use of 3D printing in medical and dental will continue to advance, paving the way for more advanced applications and new treatment solutions.




CHAPTER 4

Consumer Goods



Consumer goods 3D printing

To remain competitive in an ever-changing market landscape, retailers and consumer-oriented industries must be able to adapt to evolving consumer demands and industrial trends in an agile way. Additive manufacturing meets these needs, providing a cost-effective approach to product development, testing and production. From consumer electronics to toys and sportswear, key players within the consumer goods industry are increasingly recognising 3D printing as a valuable addition to existing manufacturing solutions.


Additionally, the recent growth of industrial desktop 3D printers has brought the technology closers to the hands of designers and engineers, accelerating the the opportunities of what can be achieved within the sector.




The Benefits of 3D Printing for Consumer Goods


Enhanced product development


Before any new product can be launched, its design must first be validated, tested and approved. This process happens during the product development stage. Prototypes and models are a vital aspect of this process, as they are commonly used for market research, testing and validation purposes.


3D printing significantly speeds up this process by enabling the rapid production of prototypes and models. Using the technology, product designers and engineers are able to develop and test multiple iterations and perform repetitive testing in a much shorter time frame.


Faster time-to-market


The ability to accelerate product development times has a direct impact on speed to market. The case is simple: by being able to test and validate products faster, product designers and engineers companies can speed up their time-to-market.


Some companies have even gone one step further by 3D printing products for pilot product testing with consumers. In 2015, PepsiCo developed several prototypes of its Ruffles chips brand, subsequently testing the sizes with consumers to identify which was preferred. The most popular prototype was then used to create a new potato chip slicer at the PepsiCo manufacturing plants. 


This application of 3D printing enabled PepsiCo to bring to market various flavours of its Ruffles brand much faster, with multiple flavours available in well over a dozen markets globally.


Mass customisation 


Perhaps the biggest impact of 3D printing for consumer goods lies in the potential of creating personalised products, tailored to the requirements of consumers.  


With traditional manufacturing, where products are typically made en masse, the production of customised products in small batches is highly inefficient and not cost-effective.

 

These limitations are eliminated with additive manufacturing — and companies are already taking advantage of the ability to provide a customised service to customers.

 



Consumer Goods Applications

Spotlight: Adidas

Footwear


Adidas, for example, 3D prints midsoles for its Futurecraft 4D sneakers, using Carbon’s proprietary Digital Light Synthesis™ technology. One of the key benefits of using 3D printing in this way is to improve shoe performance for various sports, thanks to the various properties of the midsole.


The one-of-a-kind design of a midsole, which features 20,000 struts for better cushioning, would be impossible to create with traditional techniques. With injection or compression moulding, for example, it would be virtually impossible to create midsoles with the variable properties needed — and require assembly.

Adidas futurecraft 4d midsoles

Adidas's Futurecraft 4D sneakers [Image credit: Adidas]


Beauty & Cosmetics 


Spotlight: Chanel

 

While 3D printing has historically been seen as the sole preserve of industrial manufacturing, the technology is also finding its way into the beauty industry.

 

French fashion company Chanel is one company demonstrating the potential of 3D printing, having launched the world’s first 3D-printed mascara brush in 2018. The Révolution Volume mascara brush was created using SLS, a technology that uses a laser beam to fuse layers of polyamide powder.

 

With 3D printing, the design of the brush has been optimised - for example, the rough, granular texture improves the adhesion of the mascara to the lashes.

 

Although 3D printing might be new to the cosmetics industry, pioneers like Chanel demonstrate show how the technology could transform the way cosmetic products are manufactured.

 

Chanel 3D printed mascara brush Revolution Volume

Personal care products


Spotlight: Gillette 

 

With the rise of the digital age, consumers are increasingly demanding personalised goods. Companies must therefore respond to this trend by providing personalised products tailored to consumers.

 

One brand exploring 3D printing to offer greater personalisation for its customers is
Gillette. In partnership with Formlabs, Gillette has launched its Razor Maker™ platform. Through this pilot programme, customers are able to choose from 48 design options to order customised shaver handles, which will be produced using SLA.

 

 Gillette razors 3D printed handles

Image credit: Gillette


Jewellery

 

Spotlight: BOLTENSTERN


At first thought, jewellery may not seem to be an obvious application of additive manufacturing. However, the technology is benefiting jewellery makers in two ways. The first is by 3D printing investment casting patterns, which are cheaper and faster to produce than traditional methods.

 

A second approach is to 3D print jewellery directly using precious metals. Both ways enable custom jewellery with thin walls and intricate details to be created which would be impossible to make through other means.

 

Austrian jewellery company BOLTENSTERN has used 3D printing to produce jewellery pieces such as bracelets, earrings, necklaces and cufflinks.

 

In partnership with COOKSONGOLD, a supplier of precious metal powders, BOLTERNSTERN used DMLS technology to create its “Embrace” jewellery collection. According to the jewellery maker, this is the first commercial collection on the market to be directly 3D printed in gold and platinum.


Featuring various shapes, including a start, cloud and flower, the technology made it easier to reach unprecendented levels of customisation and highly complex designs. The customisable nature of the collection means that customers can choose from a variety of combinations and variations.

When compared to pioneering industries like aerospace and medical, adoption of additive manufacturing within the consumer goods industry is still relatively young. However, the benefits of greater customisation, faster time-to-market and product development are increasingly recognised by the industry.

 

As additive manufacturing matures, we’ll likely see more consumer brands following the path of the industry’s early adopters, pushing the technology towards new applications and opportunities.




CHAPTER 5

Industrial Goods




Bearings


The industrial goods sector includes the production of machinery components, tooling and equipment used in the manufacture of other goods. With increasing production costs and the digitisation of manufacturing, industrial OEMs must constantly evolve to maintain operational agility and keep costs down. Manufacturers are therefore increasingly turning to 3D printing to stay agile, responsive, and innovative.

 



Key Benefits of 3D Printing for Industrial Goods 


Design complexity


As we’ve seen in other industries, rapid prototyping is a key use case of 3D printing for the industrial goods sector. Design changes that would have taken months using conventional manufacturing methods can be implemented much faster, oftentimes in under a week, using 3D printing.

 

Shorter lead times


According to Sculpteo’s ​2018 State of Industry report, 52% of those within the industrial goods sector favour 3D printing most for its ability to reduce lead times. Since 3D printing requires no tooling, manufacturers can reduce the time needed to produce parts, bypassing a time-consuming and costly tooling production step.

 

Design complexity


3D printing is a cost-effective technology for producing parts with complex geometries. Designs that would otherwise be impossible to produce with conventional manufacturing can now be produced with 3D printing.

 

On-demand production


Since 3D printing can produce physical parts from digital files in a matter of hours, companies can leverage a new model of manufacturing parts on demand.



Industrial Goods Applications

Spotlight: Bowman Additive Production 

End-use parts


Major industrial goods companies are already investigating additive manufacturing as a mean sof producing end parts. For example, 3D printing is helping to transform the production of bearings at Bowman Additive Production, a leading UK bearings manufacturer.


Using HP’s Multi Jet Fusion technology and PA11 nylon material, Bowman has been able to manufacture its bespoke Rollertrain cage. The part indicates the complexity of the manufacturing process; it contains an interlocking structure that uses the rolling elements to pin together each section of the cage.


The result: bearings that possess a 70% increased load-bearing capacity and an increased working life of up to 500%.

Bowman International bearings



Tooling 


Spotlight: Eckhart and Wilson Tool International


The ability to 3D print manufacturing aids, such as jigs, gauges and fixtures, opens up a new range of possibilities for industrial goods manufacturers.


In addition to jigs and fixtures, 3D printing is revolutionising the production of hard tooling like moulds, used in injection moulding and die casting. Traditionally, moulds are CNC milled and may undergo multiple design iterations, taking weeks if not months, before the final design is achieved. This results in a process both time-consuming and very costly, with a considerable material waste.   


Now, metal 3D printing technologies like DMLS or SLM can be used instead, allowing tool-making companies not only to reduce material waste but improve the functionality of a mould. This can be achieved by integrating more complex-shaped cooling channels within the design, substantially improving the cooling characteristics of a mould.

 

Eckhart, a company providing manufacturing solutions, has recently adopted 3D printing with the aim of replacing existing metal tools with 3D-printed equivalents. 3D printed tools offer multiple benefits, according to the company, including improved line of sight, lightweight components and improved design and ergonomics.

 

Wilson Tool International, the largest independent tooling manufacturer, is another company that has recognised the advantages of additive manufacturing for tooling, after launching its 3D printing division — Wilson Tool Additive — in late 2018. The AM division will see the company offering custom-made jigs, fixture and tooling equipment using FDM and vat polymerisation technologies. The benefits? Customers can expect to receive made-to-order bending tools and support parts in a matter of hours as opposed to days or weeks.



Spare parts


Spotlight: Siemens Mobility 


Thanks to on-demand 3D printing, manufacturers can produce spare parts quickly and cost-effectively.  This approach is beneficial, for example, when legacy equipment requires a replacement that may be out of production or difficult to procure. 3D printing spare parts at the point of need also can help reduce inventory, bypassing the costly storage of spare parts that have low demand.


Siemens Mobility is one example of a company using 3D printing to manufacture spare parts and tooling on-demand at the Siemens Mobility RRX Rail Service Centre. With roughly 100 trains expected to enter the depot each month, 3D printing will play an important role in optimising spare part production.

 

The 3D-printed parts are said to reduce cost and lead-times from week to hours whilst also bringing greater operational agility.

For industrial manufacturers, 3D printing offers new ways to improve manufacturing processes, develop new business models and drive innovation.  


While further advancements are still needed to accelerate adoption of the technology even further,  such as process repeatability and part quality, as industrial AM capabilities continue to evolve, so to will the applications of the technology within the sector.  


To prepare for this future, industrial OEMs must consider the need to implement an AM strategy for their organisations.




CHAPTER 6

What is the Future of 3D Printing?




Throughout this guide, we’ve seen how 3D printing is moving beyond the boundaries of rapid prototyping. New possibilities for serial production and fully virtual inventories could soon become a reality.


The industrial applications highlighted in this guide demonstrate the value of 3D printing to existing manufacturing workflows. While there are several drivers behind this transition, these can be broadly summarised into two groups:


  • Process Innovation: refers to the greater flexibility and agility 3D printing brings to manufacturing and supply chains. It includes the digitisation and decentralisation of production, as well as the ability to create tools and spare parts on-demand.

  •  

  • Product Innovation: refers to the expanded design possibilities to create innovative new parts and products, including complex lattice structures and other geometries, lightweighting, customisation, part count reduction and multi-material 3D printing.


As of 2019, we’ve seen 3D printing making huge leaps forward, pointing to even more exciting opportunities on the horizon. As it stands, the potential of the technology is really only starting to be fully recognised. However, as companies across industries move ever-more towards smarter, digital manufacturing, the relevance of industrial 3D printing will only continue to increase.